UML Training: System Engineering & Application Architecture (SYSENG, 2 jours)

Description

The course System Engineering & Application Architecture (UML Training) is an exploration of the challenges, tasks, roles & responsibilities of implementing a formal systems engineering process. The training begins with a comparison of waterfall & iterative methodologies. This is followed by a thorough discussion of the tasks and challenges of a formal system engineering process implementation. Every aspect of the System Engineering process is discussed including High Level Design, Requirements, Design Specifications, UML, topology design & more.

Tarifs

- Tarification: \$1,500/person
- Rabais de 10% lorsque vous inscrivez 3 personnes.

Plan de cours

Essential Concepts About Functional and Project Organizations Introducing Waterfall Methods: Overview, Advantages and Disadvantages Introducing the Iterative Method: The Need for Small Steps Understanding the Rational Unified Process **Understanding Agile Methods** Clarifying Agile Methods: What is and is not Agile? The Challenges of Applying am Iterative Method An Overview of Change Management Iterative Methods Exploring the Iterative Method from Inception to Deployment The Rational Unified Process from Beginning to End **Exploring Inception Exploring Elaboration Exploring Construction Exploring Transition** A Closer Look at Agile Methods Smooth Beginnings: Inception How to Start? Comparing Waterfall and Iterative Methods The Role of the Business Case The Importance of Requirements: Business and System Understanding Requirements in an Iterative Method: How Detailed are They? Creating the Iteration Plan Estimating Costs and Timelines in an Iterative Method Creating a High Level Architecture Common Mistakes when Migrating from a Waterfall Method **Roles and Responsibilities** The Systems Engineering Process Process Overview: Goals and Objectives Inputs, Outputs and Expected Outcomes Challenges and Risks High Level Design

Detailed Design
Build and Verify
Implementation
Life Cycle Management
High Level Design
Reviewing Inputs, Outputs and Activities
Producing the System Engineering Plan
Producing the System Requirements Specification (SRS)
Producing the System Design Specification (SDS)
Writing the System Design Specification (SDS)
Introduction to the SDS
About the SDS Structure
System Wide Decisions
Identity, Access Management and Directory Services Strategy
Service Continuity Strategy
System Management Strategy
Writing the System Requirements Specification (SRS)
The Structure of the SRS
About Technical Requirements
Managing Scope and Technical Details
How much Details is too much Detail?
Best Practices and Techniques
Common Mistakes in Writing Technical Specifications
Mapping Functional Requirements to Technical Requirements
Using Appropriate Language: Editing and Rewriting Technical Requirements
Managing Technical Requirements
About Acceptance Criteria and Test Plans
Build and Verify and Requirements
Testing Fundamentals
Tracing Requirements back to their Origins
Finalizing Essential Documents
Updating Related Documents
Wrapping things Up
Finalizing the Design
Build and Verify
Final Design Review (FDR
Implementation
In-Service Support and Life Cycle Management
Review